next up previous
Next: About this document ... Up: GLESP Description and Examples Previous: ntot

rsalm

Description

rsalm convolves the map with a symmetric beam via

\begin{displaymath}
a^{'}_{{\ell}m} = B_{{\ell}}\cdot a_{{\ell}m}
\end{displaymath} (6)

, where $B_{{\ell}}$ is the expansion in Legendre polynomials of a symmetric beam. The symmetric beam can be input by reading in an ASCII file containing the profile of $B_{{\ell}}$, or by providing the FWHM for a symmetric Gaussian beam, where
\begin{displaymath}
B_{{\ell}}= \exp[- \sigma^2 {\ell}({\ell}+1) / 2 ]
\end{displaymath} (7)

and
\begin{displaymath}
\sigma = \frac{{\rm FWHM}} {\sqrt{8 \ln 2}}.
\end{displaymath} (8)

For deconvolution, a simple Tikhonov regularization scheme is always applied via
\begin{displaymath}
a^{''}_{{\ell}m}=\frac{a_{{\ell}m}}{B_{{\ell}}+ \alpha},
\end{displaymath} (9)

where $\alpha$ is the regularization parameter.

Examples

  1. Convolution:

  2. De-convolution with Tikhonov regularization:


next up previous
Next: About this document ... Up: GLESP Description and Examples Previous: ntot
Gauss Legendre Sky Pixelization