next up previous
Next: polalm Up: GLESP Description and Examples Previous: ntot

polmap

Description
polmap synthesizes CMB temperature and polarization maps from spherical harmonic coefficients $a_{{\ell}m}$ and polarization mode coefficients $e_{{\ell}m}$ and $b_{{\ell}m}$.
\begin{displaymath}
T(\theta, \phi) = \sum_{{\ell}=0}^{\max}\sum^{{\ell}}_{-{\ell}} a_{{\ell}m}Y_{{\ell}m}(\theta,\phi)
\end{displaymath} (6)

To synthesize a map, polmap can process an $a_{{\ell}m}$ file either in FITS Binary Extension-like or in ASCII format, or can read an ASCII string of $a_{{\ell}m}$.

If the input is a power spectrum $C_{{\ell}}$ or $D_{{\ell}}$ (where the $C_{{\ell}}$ ASCII data have to be in units of $T^2$, and $D_{{\ell}}$ unitless), polmap generates a Gaussian map of CMB anisotropies by assigning the $a_{{\ell}m}$ = COMPLEX($\Re$, $\Im$) mutually independent Gaussian-distributed real ($\Re$) and imaginary part ($\Im$), both with a standard deviation $\sqrt{C_{{\ell}}/2}$ at each ${\ell}$ harmonic.

To synthesize polarization maps of Stokes-parameters Q and U, polmap can process 3-alm file containing $a_{{\ell}m}$, $b_{{\ell}m}$ and $e_{{\ell}m}$ data, separate $b_{{\ell}m}$ and $e_{{\ell}m}$ files and file either in FITS Binary Extension-like or in ASCII format, or can read an ASCII strings of $e_{{\ell}m}$ and $b_{{\ell}m}$.

Maps of the Stokes parameters $Q$ and $U$ are calculated with the potentials $S$ and $P$ as follows:

\begin{displaymath}
Q=D_1S-D_2P,\quad U=D_2S+D_1P,
\end{displaymath} (7)

and operators $D_1$ and $D_2$ are:
\begin{displaymath}
D_1={1\over 2}\left({\partial^2\over\partial\theta^2}-cot\th...
... x^2}-
{1\over 1-x^2}{\partial^2\over\partial\varphi^2}\right)
\end{displaymath} (8)


\begin{displaymath}
D_2=\left({1\over\sin\theta}{\partial^2\over\partial\theta
...
...arphi}+{x\over 1-x^2}{\partial\over\partial\varphi}
\right) .
\end{displaymath}

where $x=cos\theta$.


\begin{displaymath}
S={1\over\sqrt{2\pi}}\sum_{l=2}^{l_{max}}\left(s_{l0}
f^0_l(...
...(x)[s_{lm}^c\cos(m\varphi)-
s_{lm}^s\sin(m\varphi)]\right) ,
\end{displaymath} (9)


\begin{displaymath}
P={1\over\sqrt{2\pi}}\sum_{l=2}^{l_{max}}\left(
f^0_l(x)+2\s...
...(x)[p_{lm}^c\cos(m\varphi)-
p_{lm}^s\sin(m\varphi)]\right) ,
\end{displaymath} (10)


\begin{displaymath}
f_l^m=\sqrt{(l+0.5){(l-m)!\over( l+m)!}}P_l^m,\quad
0\leq m\leq l\leq l_{max} ,
\end{displaymath} (11)

Here $P_l^m(x)$ and $f_l^m(x)$ are the associated Legendre functions (ordinary and normalized) and $s_{lm}$ and $p_{lm}$ (of B and E-modes) are the coefficients of decomposition characterizing properties of polarization. See other details in the correpsnoding paper of GLESP 2.0.

Examples

  1. Synthesizing an anisotropy map from given spherical harmonic coefficients (-a, -as)

  2. Gaussian random map simulation from a given angular power spectrum (-Dl, -Cl):

  3. Synthesizing maps of Q and U Stokes parameters unisg given scalar and pseudosacalar harmonic coefficients (E and B-modes)

next up previous
Next: polalm Up: GLESP Description and Examples Previous: ntot
Verkhodanov Oleg 2009-04-01