next up previous
Next: rsalm Up: GLESP Description and Examples Previous: polmap

polalm

description
polalm decomposes an input CMB temperature map into its spherical harmonic coefficients $a_{{\ell}m}$ and/or power spectrum:
\begin{displaymath}
C_{{\ell}}=\frac{1}{2{\ell}+1}\sum_{m=-{\ell}}^{l} \vert a_{{\ell}m}\vert^2.
\end{displaymath} (12)


\begin{displaymath}
D_{{\ell}}=\frac{ {\ell}({\ell}+1)C_{{\ell}}}{2 \pi T_0^2}.
\end{displaymath} (13)

where $T_0 = 2.726$ K. and calculates decomposition coefficients of scalar and pseudoscalar potentials (E and B-modes) for Q and U-maps:
\begin{displaymath}
s_{lm}^c=\int_{-1}^1dx[\Phi^m_l(x)U_s^m(x)+F^m_l(x)Q_c^m(x)] ,
\end{displaymath} (14)


\begin{displaymath}
s^s_{lm}=\int_{-1}^1dx[\Phi^m_l(x)U_c^m(x)-F^m_l(x)Q_s^m(x)] ,
\end{displaymath} (15)


\begin{displaymath}
p_{lm}^c=\int_{-1}^1dx[F^m_l(x)U_c^m(x)-\Phi^m_l(x)Q_s^m(x)] ,
\end{displaymath} (16)


\begin{displaymath}
p^s_{lm}=\int_{-1}^1dx[-F^m_l(x)U_s^m(x)-\Phi^m_l(x)Q_c^m(x)] ,
\end{displaymath} (17)

where

\begin{displaymath}
F^m_m={m-1\over 2M_m}m{1+x^2\over 1-x^2}f^m_m,\quad
F^m_{m+...
...m+3}\over M_{m+1}}
\left[{m-1\over 1-x^2}-{m+1\over 2}\right],
\end{displaymath}


\begin{displaymath}
\Phi_m^m=-{m(m-1)\over M_m(1-x^2)}xf^m_m,\quad
\Phi^m_{m+1}=mf^m_m{\sqrt{2m+3}\over M_{m+1}}  
{1-mx^2\over 1-x^2} ,
\end{displaymath} (18)

See other details in the correpsnoding paper of GLESP 2.0.

To decompose an input maps for harmonic coefficients, polalm processes the FITS Binary map with position and temperature, or Q and U Stokes parameters ( $T(\theta, \phi)$, $Q(\theta, \phi)$, $U(\theta, \phi)$) in 3 sections:

  1. $x =\cos(\theta)$, the center-position of the rings as a function of the polar angle (nx positions),

  2. nx numbers with the number of pixels, nphi, in the corresponding ring,

  3. $T(\theta, \phi)$ organized in one row using Point 1 as the major index and Point 2 as the minor index.

Examples

  1. Map decomposition for its angular power spectrum and/or spherical harmonic coefficients (-map):


next up previous
Next: rsalm Up: GLESP Description and Examples Previous: polmap
Verkhodanov Oleg 2009-04-01